Laboratory of Radioecology

Radioecology Laboratory focuses on understanding the behaviour of natural and man-made radionuclides in natural and agricultural environments of Belarus. Its research efforts combine several tasks ranging from studying the migration of Chernobyl-origin radionuclides and their transition in food chains, development of remediation methods for technogenically disturbed lands and the ways to curb bioavailability of contaminants in such areas to improving the existing measurement techniques used to determine the concentrations and occurrence forms of radionuclides and heavy metals in environmental samples.

Acting Head of Laboratory: Elena TANKEVICH

Contact:

E-mail: radioecology@irb.basnet.by
Phone: +375 232 349 753

Research Staff:

LASKO Tamara, senior researcher
DUDAREVA Natalya, researcher
SIMONCHIK Yulia, researcher
LEFERD Galina, researcher
SUKHAREVA Diana, researcher

History

The laboratory was founded in 2002 following the relocation of IRB headquarters from the capital city to Gomel. It was formed by fusing together four other structural divisions of the institute – Atmospheric Radioecology lab, Aquatic Systems lab, Dosimetry & Radiometry team, and Toxicology team. Original researchers of the newly established laboratory were those who had significantly contributed, collectively and individually, to tackling urgent matters in the post-Chernobyl recovery period.

Former directors: 2002–2003 – Dr. V. Mironov, lab founder, Candidate of Chemical Sciences; 2003–2009 – Dr. V. Kudriashov, Candidate of Biological Sciences; 2009–2011 – Dr. V. Knatko, Candidate of Physics and Mathematics, 2012–2023 – Dr. Alexander Nikitin, Candidate of Agricultural Sciences; 2023–2025 – Egor Mishchenko; 2025–present – Elena Tankevich.

Present time

Our current research efforts highlight the following objectives of fundamental and applied science:

  • discovery of the physiological mechanisms of controlling the uptake of technogenic radionuclides and heavy metals by plants;
  • development of remediation methods for technogenically disturbed lands;
  • improvement of spectrometry data processing techniques with a low signal-to-noise ratio.

Soil conditioners developed at the lab are combined-effect biologically active soil-improving additives that can be used to remediate technogenically disturbed lands and make agricultural practices on them possible or even more advanced.

Part of our research is focused on studying the behaviours of radionuclides and heavy metals in soil-to-plant systems under the changing weather and climate conditions.

Many of our research activities are carried out in Polesye State Radiation-Ecological Reserve located in the Chernobyl exclusion zone. There, for instance, we study the processes of spatial redistribution and transformation of physical and chemical forms of man-made radionuclides in soil and water environments; work out new methods to evaluate exposure doses to plants and animals in their natural habitats, develop special software tools to process the measurement data and deal with the tasks of radiation protection.

Facilities and Equipment

Radiochemical analysis lab

The laboratory is sufficiently equipped with the means necessary and modern measuring instruments to carry out high-quality analytical radioecological research, from sampling and sample preparation to radiochemical analysis and spectrometry measurements. Laboratory premises comply with the existing radiation safety requirements.

GX2018 Canberra gamma spectrometer

This semiconductor gamma-detector-equipped spectrometry unit is used to measure radioactive isotopes (Am-241, Ba-133, Co-57, Co-60, Cs-137, Eu-152, Ir-192, Mn-54, Na-22, Se-75, Th-228, Cr-51, Ga-67, I-123, I-125, I-131, In-111, Tc-99m, Tl-201, Xe-133, K-40, Ra-226, Th-232, U-238, etc.) in water, soil, food, biomedical, aerosol filters and other samples. It is complimented by AT1320C Gamma Activity Monitor – a spectrometric scintillation (NaI(Tl) detector) gamma activity monitor used for measuring volumetric (specific) radionuclide activity of Сs-137 and К-40 in environmental samples.

Inductively Coupled Plasma Mass Spectrometer

This is a quadrupole mass analyzer, manufactured by Perkin Elmer, intended for the element and isotope analysis of liquid samples, with practically an all-element range: metals, non-metals (excl. N and O gases), lanthanides, actynoides, including the near transuranic elements and Tc-99, U-233, 234, 236, Th-230, isotopes of Pu and Np. Good for measuring ultra low concentrations of isotopes (10–6–10–9) in relation to the main isotope.

To measure the content of toxic and explosive gases in the air, we use a multi-channel gas analyzer Drager X-am 7000. This device is equipped with sensors for determining hydrogen sulphide (up to 100 ppm), hydrogen cyanide (up to 50 ppm), ammonia (up to 200 ppm). The sensors have fast response, high accuracy and low cross sensitivity.

Ultra high frequency generators are used to study physiological and biochemical reactions of plant organisms to electromagnetic radiation.

A special climate-controlled phytoroom is where our controlled vegetation experiments take place.

Apart from that, the lab hosts a range of equipment for sampling and sample preparation (microwave sample extraction system, ovens, muffle furnaces, mills, etc.), radiation monitoring (dosimeters, radiometers, etc.), chemical analyses (potentiometers with electrode sets, vacuum pumps, sand baths, shakers, pure water system, etc.).

Ongoing Projects

  • Modelling of phytocoenotic plant successions and redistribution of radioactive isotopes in floodplain ecosystems under changing hydrological conditions. 2021–2025 State R&D Programme “Natural Resources and Environment”, sub-programme “Radiation and Biological Systems”;
  • Detection and precision improvement in gamma spectrometry with a low signal-to-noise ratio using machine learning methods. 2021–2025 State R&D Programme “Natural Resources and Environment”, sub-programme “Radiation and Biological Systems”;
  • Develop and introduce the methods of remote sensing of forest ecosystems in the territory of high-level radioactive contamination to monitor their sanitary state and prevent from its dramatic worsening. 2021–2025 State Programme on Overcoming the Consequences of the Chernobyl Disaster.

Publications

  1. Kalinichenko, S.A. Spatial Distribution of 90Sr in the Ecosystems of Polesye State Radiation-Ecological Reserve / S.A. Kalinichenko, A.N. Nikitin, I.A. Cheshyk, O.A. Shurankova // Strontium contamination in the environment / eds. P. Pathak, D.K. Gupta. – Cham: Springer International Publishing, 2020. – P. 121-140.
  2. Чешик, И. Новые почвоулучшающие добавки для загрязненных радиоактивным цезием земель (Novel soil conditioners for cesium-contaminated lands, in Russian) / И. А. Чешик, А. Н. Никитин // Наука и инновации. 2019. – №3. – С.21–25. https://doi.org/10.29235/1818-9857-2019-3-21-25
  3. Калиниченко С.А. Особенности латерального перераспределения 137Cs, 90Sr, 241Am в поверхностном слое почвы геохимически сопряженных ландшафтов при значительном для белорусского Полесья перепаде высот (Specific features of lateral redistribution of 137Cs, 90Sr, 241Am in the topsoil of geochemically linked landscapes in significant elevation differences typical for Belarussian Polesye, in Russian) / С. А. Калиниченко, Ю. И. Бондарь, А. Н. Никитин, В. Е. Белаш, А. А. Баленок // Известия Гомельского государственного университета имени Ф. Скорины. – 2019. – Т. 114, № 3. – С. 29–35.
  4. Nikitin, A.N. Impact of effective microorganisms on the transfer of radioactive cesium into lettuce and barley biomass / A.N. Nikitin, I.A. Cheshyk, G.Z. Gutseva, E.A. Tankevich, M. Shintani, S. Okumoto // Journal of Environmental Radioactivity. – 2018. – Vol. 192. – p. 491–497. https://doi.org/10.1016/j.jenvrad.2018.08.005.
  5. Спиров, Р.К. Конверсионные дозовые коэффициенты трансурановых элементов для растений зоны отчуждения Чернобыльской АЭС (Conversion dose coefficients of transuranium elements for plants in the exclusion zone of the Chernobyl NPP, in Russian) / Р.К. Спиров, А.Н. Никитин // Медико-биологические проблемы жизнедеятельности. – 2018. – Т. 20, № 2. – С. 52–57.
  6. Nikitin, A. Influence of electromagnetic radiation of extremely high frequency on sensitivity of plants to cold stress [Electronic resource] / A. Nikitin, D. Suhareva, E. Mishchenko, A. Zubareva, O. Shurankova, R. Spirov // IEEE Xplore Digital Library. – IEEE, 2018. DOI: 1109/ELMECO. 2017. 8267732
  7. Никитин, А.Н. Содержание 137Cs, 238Pu, 239+240Pu и 241Am в экспериментах диких копытных животных, обитающих в зоне отчуждения Чернобыльской АЭС (Concentrations of 137Cs, 238Pu, 239+240Pu and 241Am observed in experiments on wild hoofed animals in the exclusion zone of the Chernobyl NPP, in Russian) / А.Н. Никитин, О.А. Шуранкова, И.А. Чешика, С.А. Калиниченко, Р.А. Король // Радиационная биология. Радиоэкология. – Т. 58, № 2. – С. 166–173. DOI: 7868/S0869803118020054
  8. Nikitin, A.N. Potential of Biochar as a Measure for Decreasing Bioavailability of 137Cs in Soil / A.N. Nikitin, O.A. Shurankova, O.I. Popova, I.A. Cheshyk, R.K. Spirov // Remediation Measures for Radioactively Contaminated Areas / ed: D. Gupta, A. Voronina. — Springer, Cham., 2018 – p. 113—137. https://doi.org/10.1007/978-3-319-73398-2_6.
  9. Kalinichenko, S. A. The Behavior of 90Sr in Macrophytes Inhibiting Water Reservoirs in the Belarussian Sector of the Chernobyl NPP Exclusion Zone. // S.A. Kalinichenko, A.N. Nikitin, I.A. Cheshyk, O.A. Shurankova // Behaviour of Strontium in Plants and the Environment / D. K. Gupta & W. Clemens (Eds.). – Springer, 2018. – P. 125–144. https://doi.org/10.1007/978-3-319-66574-0_9
  10. Зубарева, А.В. Фильтроадсорбционная очистка загрязненных долгоживущими радионуклидами водоемов (Filter-adsorption cleaning of the water bodies polluted by long-lived radionuclides, in Russian) / А. В. Зубарева, А.Г. Кравцов, С.В. Зотов // Научный журнал Академии ГПС МЧС России «Пожары и чрезвычайные ситуации: предотвращение, ликвидация» // Москва, Россия. – 2017. — № 3. – С. 64–68.
  11. Спиров, Р.К. Аккумуляция трансурановых элементов надземными и подземными органами сосудистых растений (Accumulation of transuranium elements by underground and aboveground organs of tracheophytes, in Russian) / Р.К. Спиров, А.Н. Никитин, И.А. Чешик, Р.А. Король // Доклады НАН Беларуси. – 2017. – Т. 61, № 2. – С. 51–57.
  12. Спиров, Р.К. Оценка дозовой нагрузки трансурановых элементов на отдельные виды биоты Полесского государственного радиационно-экологического заповедника (The assessment of  radiation  exposure of  transuranium elements on some species of  the biota of Polesie State Radioecological Reserve, in Russian) // Р.К. Спиров, А.Н. Никитин // Проблемы здоровья и экологии. – 2017. — № 4. – С. 52–57.
  13. Чешик, И.А. Влияние микробиологических препаратов ЕМ-1 и EMX-Gold на биокинетику 137Cs в организме лабораторных животных (Impact of microbiological preparations EM-1 and EMX-Gold on biokinetics of 137Cs in the laboratory animals, in Russian) / И.А. Чешик, А.Н. Никитин, Д.В. Сухарева и др. // Известия Национальной академии наук Беларуси. Серия медицинских наук. – 2017. – № 1. – С. 45–53.
  14. Чешик, И.А. Перспективы использования микробиологических препаратов для снижения радиационных рисков (The potential of using microbiological preparations to reduce radiation-associated risks, in Russian) / И.А. Чешик, А.Н. Никитин, Д.В. Сухарева и др. // Наука и инновации. – 2017. – Т. 171, № 5. – С. 64–67.
  15. Cheshyk, I. Impact of microbiological preparations on radioactive cesium excretion rate under condition of its chronic ingestion / I. Cheshyk, D. Suchareva, A. Nikitin // RAD Conference Proceedings. – 2017. – Vol. 2. – P. 64–69. DOI: 21175/RadProc.2017.14
  16. Gaponenko, V.I. A comparative study of 40K versus 137Cs uptake as chemical analogs by vegetable plants at different concentrations of these nuclides in soil near the 30-km Chernobyl zone / V.I. Gaponenko, N.V. Shamal, A.N. Nikitin // Radioprotection 51(1), 25-30 (2016), 25-30
  17. Спиров, Р.К. Нейронные сети в спектрометрии радиоактивных излучений: состояние проблемы (Neural networks  in  spectrometry  of  radioactive  radiations: the  problem  condition, in Russian) / Р.К. Спиров, А.Н. Никитин // Экологический вестник. Научно-практический журнал, 2016. – № 1(35). – С. 124-128.
  18. Bondar Yu.I., Navumau A.D., Nikitin A.N., Brown J., Dowdall M. Model assessment of additional contamination of water bodies as a result of wildfires in the Chernobyl exclusion zone // Journal of Environmental Radioactivity. – 2014. – Vol. 138. – P. 170–176. https://doi.org/10.1016/j.jenvrad.2014.08.018
  19. Конопля Е.Ф., Миронов В.П., Журавков В.В. Радиация и Чернобыль: короткоживущие радионуклиды на территории Беларуси (Radiation and Chernobyl: Short-lived radionuclides in Belarus, in Russian). – Минск: Белорусская наука, 2008. – 199 с.
  20. Гапоненко В.И., Конопля Е.Ф. Радиация и Чернобыль: Состояние, хлорофилл и защита растений (Radiation and Chernobyl: Plants State, Chlorophyll and Protection, in Russian). – Гомель: РНИУП «Институт радиологии», 2007. – 266 с.
  21. Конопля, Е.Ф., Кудряшов В.П., Миронов В.П. Радиация и Чернобыль: Трансурановые элементы на территории Беларуси (Radiation and Chernobyl: Transuranic Elements in Belarus Territory, in Russian). – Минск: Белорус. наука, 2006. – 191 с.
  22. Ryabokon N.I., Smolich I.I., Kudryashov V.P., Goncharova R.I. Long-term development of the radionuclide exposure of murine rodent populations in Belarus after the Chernobyl accident // Radiat Environ Biophys, 2005 – P. 169-181. DOI: 1007/s00411-005-0015-2
  23. Mironov V.P., Matusevich J.L., Kudrjashov V.P., Ananich P.I Determination of uranium concentration and burn-up of irradiated reactor fuel in contaminated areas in Belarus using uranium isotop ratios in soil samples // Radiochimica Acta, 2005. — № 93. – P.  781-784.